
Notes on the Xvi Source Code

Chris Downey
John Downey

Xvi (pronounced ecks-vee-eye) is a free, portable, multi-window
implementation of the popularUNIX® editor vi.

This document contains information on how to port xvi to systems not currently
supported. Italso explains how the xvi source code is arranged into modules,
and explains some of the data structures which are used, so that modifications
may be made if and when necessary to the editor itself.

1. INTRODUCTION

Xvi is intended to be portable to just about any system. Thisis one of the central reasons for its
existence; the authors wish to be able to use the same editor everywhere.

The main body of the editor is (supposedly) fully portable, relying only on standard facilities
defined by the White Book, and on a set ofprimitiveswhich are provided by a set of one or more
modules for each operating system.If __STDC__ is defined, certain ANSI C facilities will be
used, but the editor will compile with non-ANSI compilers.

Therefore, in order to portxvi to a new system, all that is necessary is to provide the defined set
of primitives, and then build the editor. Or at least, that’s the idea; we have refined the set of
primitives as we port the editor to new environments, and it’s getting pretty easy now.

The rest of this document is divided into sections as follows:

Section 2: System-Specific Modules
This section deals with the layout of source files and makefiles which you will have to
deal with when portingxvi.

Section 3: Primitives Provided by xvi
Discusses what primitives are provided by the main body of the editor source code for
use by the system interface code.

Section 4: System Interface
Explains the primitives which need to be provided in order to makexvi work.

Section 5: Data Structures
Details the internal data types used in the editor, and any functions available for operating
on those types.

Section 6: Source Files
Lists the source files comprising the editor, and explains what functionality is provided by
each one.

2. SYSTEM-SPECIFIC MODULES

The system-specific code normally consists of three (or more) files; a “.c” fi le, a “.h” fi le, and a
makefile. For example:

25th September 1992 Pa g e1

2 Xvi Source Code Notes

qnx.c
qnx.h
makefile.qnx

comprise the system-specific module for the QNX operating system.

In most cases, the system-specific code is divided into two or more modules, where one (called
thesystem interface module) is concerned with general interactions with the operating system and
the other (called theterminal interface module) is designed for a specific interface to a display
and keyboard (and possibly, a mouse).

For example, the genericUNIX implementation hasunix.c and unix.h for the system interface
module, andtcap_scr.c and termcap.h for the terminal interface module; this should work
reasonably with any full-duplex terminal that can be described by thetermcap and terminfo
databases. Onconsoles with memory-mapped displays and systems with graphic user interfaces,
it may be possible to achieve faster display updating and perhaps other benefits by replacing the
termcap module with another one that makes better use of whatever facilities are available. For
instance, there is an experimental version for SunView, which allows mouse input on Sun
workstations running the SunView window system.

On the other hand, thetermcap-specific routines might conceivably be useful on some other
operating systems (such as VMS), so in general it seemed a good idea to make the termcap-
specific routines a separate module.

The current MS-DOS implementation has a separate terminal interface module, which is designed
specifically for IBM PC compatible computers. This is in the files

ibmpc_a.asm
ibmpc_c.c
ibmpc.h

The first of these is written in assembly language because there are not enough routines common
to the various MS-DOS C compilers which reliably access the display and keyboard at a low
enough level.

The hardware-independent system interface module for MS-DOS is in

msdos_a.asm
msdos_c.c
msdos.h

The first of these is written in assembly language for the same reason as isibmpc_a.asm.

Theoretically, different terminal interface modules could be written for MS-DOS systems running
on hardware which is not IBM-compatible but, unfortunately, such systems seem to be virtually
extinct nowadays.

Sometimes more than one makefile is provided, as in the case ofUNIX , where different versions
work in slightly different ways.

It is, of couse, not necessary to provide all — or any — of these files for a particular
implementation; this is just a convention. Themakefile(s) for each system determine what files
are used in the compilation of the editor.

The following porting modules are available at present:

Pa g e2 25th September 1992

Xvi Source Code Notes 3

System Makefile SourceFiles

UNIX
BSD makefile.bsd unix.[ch]tcap*.c termcap.h
System V† makefile.usg unix.[ch]tcap*.c termcap.h
AIX makefile.aix unix.[ch] tcap*.c termcap.h
ULTRIX makefile.ult unix.[ch] tcap*.c termcap.h
Xenix † makefile.xen unix.[ch]tcap*.c termcap.h
POSIX (e.g. BSDI) makefile.pos unix.[ch]tcap*.c termcap.h
SunOS makefile.sun unix.[ch]tcap*.c termcap.h
SunView makefile.sv unix.[ch]sunview.h

sunfront.c sunback.c
xvi.icn

MS-DOS msdos_c.c msdos.h
ibmpc_c.c ibmpc.h

Microsoft C 5.* makefile.msc 8086mm.incibmpc_a.asm
& M ASM 5.* msdos_a.asm

Microsoft Quick C makefile.qc 8086mm.incibmpc_a.asm
& M ASM 5.* msdos_a.asm

Zortech C++ 2.* makefile.zc2 8086mm.incibmpc_a.asm
& M ASM 5.* msdos_a.asm

Zortech C++ 3.* makefile.zc3 8086mm.incibmpc_a.asm
& M ASM 5.* msdos_a.asm

Zortech C++ 3.*
386 protected mode makefile.386 pc386.[ch]

OS/2†
Version 1, text mode
Microsoft C 5.1 makefile.os2 os2vio.[ch]
& M ASM 5.1 i286.asm

QNX
Version 2/3 (CII) makefile.qnx qnx.[ch]
Version 4 (Watcom C) makefile.qn4 unix.[ch] tcap*.c termcap.h

TOS †
Lattice C makefile.tos tos.[ch]tos.lnk

† Versions marked with† probably do not work, as systems have not been recently available to
the authors for testing.

3. PRIMITIVES PROVIDED BY XVI

3.1. GeneralDefinitions

The filexvi.h should be included by all system-specific modules; this file should also be edited so
that a system-specific header file (or files), as determined by a predefined keyword, will be
included.

25th September 1992 Pa g e3

4 Xvi Source Code Notes

For instance, underUNIX , the word UNIX is defined by passing the-DUNIX flag to the C
compiler from the makefile, andxvi.h contains the following lines:

#ifdef UNIX
include "unix.h"
#endif

in order to obtain theUNIX-related definitions from that header file.

Among the definitions inxvi.h are the following:

bool_t
A Boolean type having valuesTRUE or FALSE.

const
volatile

These are defined out when__STDC__ is not defined, so that it is always safe to use
them.

xvi.h also includes various other header files which are needed. The following system header
files are always included:

stdio.h
ctype.h
signal.h
string.h

These files are included if__STDC__is defined:

stddef.h
stdlib.h
limits.h

and if__STDC__is not defined,xvi.h will provide its own definitions for the following:

INT_MAX
INT_MIN
ULONG_MAX

FILE *f open();
char *malloc();
char *getenv();

Finally, one of the following header files will be included:

stdarg.h
varargs.h

depending on whether__STDC__ is defined or not. In order to make coding of varargs
functions easier, a macroVA_START() is defined, which takes the same arguments as the ANSI-
styleva_start(), but which is also available in non-ANSI environments (e.g. BSD).

In order to make it possible to use ANSI-style prototypes for function declarations, but still allow
compilation under non-ANSI environments, the following macro is provided:

Pa g e4 25th September 1992

Xvi Source Code Notes 5

#ifdef __STDC__
define P(args) args
#else
define P() ()
#endif

so that function declarations may be specified thus:

extern FILE *fopen P((const char *, const char *));

Please use this facility when you provide declarations for your system primitives, unless your
system always uses an ANSI compiler.

3.2. Parameters

An important facility provided for use by system-specific modules is access to the editor’s
parameter table. This is achieved by means of some apparent functions, and a set of#defined
token values. Thefunctions are:

void set_param(int n, val)
This function sets the indicated parameter to the passed value, which must be of an
appropriate type.Parameter values may be obtained by means of the following functions
(actually macros):

char *Ps(int n)
return value of string parameter

int Pn(int n)
return value of numeric parameter

bool_t Pb(int n)
return value of boolean parameter

char **Pl(int n)
return value of list parameter (aNULL -terminated array of character pointers)

int Pen(int n)
return numeric value (index) of enumerated parameter

char **Pes(int n)
return string value of enumerated parameter

In all cases, theint n argument is the index of the parameter in the table; a set of#defines is
provided, of the form:

P_name

which map the parameter names into integral values. Thus,for example, we might obtain the
value of thecolour parameter:

colour = Pn(P_colour);

or set the value of thehelpfile parameter:

set_param(P_helpfile, "/usr/lib/xvi/help");

4. SYSTEMINTERFACE

4.1. Introduction

There follows a list of the primitives which must be provided either by the system interface
module or by the underlying OS. Note that it is perfectly acceptable to implement functions or

25th September 1992 Pa g e5

6 Xvi Source Code Notes

external variables as macros so long as they “ look the same” as the definitions below. As a
guideline, anything which is (a) in capitals, or (b) is aconst variable, will be implemented as a
#definefor most systems.

When you want to actually do the port, it is highly recommended that you copy the system-
specific files for the system which seems closest to your own, and modify those files, rather than
starting from scratch.

All the following symbols should be defined in the system interface module, or by standard
header files already included byxvi.h, or by other header files explicitly included by the system-
specific header file:

const unsigned int MAXPATHLEN
The maximum number of characters in a pathname.

const unsigned int MAXNAMLEN
The maximum number of characters in a filename.

int remove(char *filename)
Remove the named file as per ANSI.

int rename(char *old, char *new)
Rename the fileold to newas per ANSI.

void sleep(unsigned int seconds)
Put the process to sleep for the given number of seconds.

const char * const DIRSEPS
The pathname separators supported for system calls (e.g."\\ /" for MS-DOS).

FILE *fopenrb(char *file)
FILE *fopenwb(char *file)

Like the standardfopen() library call, but they both open files in “binary” mode (i.e. no
conversion of cr/lf/crlf is done), for reading and writing respectively.

bool_t exists(char *filename)
ReturnsTRUE if the named file exists.

bool_t can_write(char *filename)
ReturnsTRUE if the named file can be written, i.e. if afopenwb(filename)will succeed.

char *fexpand(char *filename)
Returns a filename-expanded version of the passed filename.

#define SETVBUF_AVAIL
const unsigned int READBUFSIZ
const unsigned int WRTBUFSIZ

If SETVBUF_AVAIL (or __STDC__) is defined, these constant values are used to set
I/O buffer sizes (using thesetvbuf() function) for reading and writing files.Note that if
buffers of these sizes are unavailable at runtime, the editor will try to allocate smaller
buffers by iteratively halving the buffer size until the allocation succeeds. It is therefore
acceptable for these values to be quite large.

char *tempfname(const char *filename)
Create a unique name for a temporary file, possibly usingfilenameas a base (this will be
used bydo_preserve() to create a backup file for the file named byfilename). Thestring
returned must have been allocated usingmalloc(); NULL can be returned if there is no
more memory available.

Pa g e6 25th September 1992

Xvi Source Code Notes 7

int call_system(char *command)
Invoke the given command in a subshell. This is used for shell escapes fromxvi. The
command string may contain metacharacters which are expected to be expanded by a
command interpreter, e.g. UNIX /bin/sh, MS-DOScommand.com. Return value is 0 for
success. Inmany environments, this call may safely be#defined as system(command).

int call_shell(char *shell)
Invoke the named shell. This is used for the:shell command. Itmay be mapped into
call_system(), but is separate on some systems for efficiency reasons (i.e. not invoking
two shells to get one). Return value is 0 for success.

bool_t
sys_pipe(char *cmd, int (*wf)(FILE *), long (*rf)(FILE *))

Used for the! command. Thefirst parameter is the command to invoke, while the
second and third are functions which should be called with an open file pointer in order to
write out old, or read in new lines (respectively). Note that if “real” pipes are not
available, it is acceptable to implement this function using temporary files, but the wf
function must obviously be called beforerf .

void sys_exit(int code)
Exit with given exit status. This routine must not return.The editor is considered “dead”
once it has been called, and no further calls to editor functions should be made.

void delay(void)
Delay for a short time, about a fifth of a second. This is used for showing matching
brackets whenshowmatch is set. It is acceptable to just return if implementing this is
not easy.

4.2. Screen Control

An instance of the following structure must be defined in order to allow screen output to take
place:

25th September 1992 Pa g e7

8 Xvi Source Code Notes

typedef struct virtscr {
genptr *pv_window;
int pv_rows;
int pv_cols;

/* public: */
Vi rtScr *(*v_new)(V irtScr *);
void (*v_close)(VirtScr *);

int (*v_r ows)(VirtScr *);
int (*v_cols)(VirtScr *);

void (*v_clear_all)(VirtScr *);
void (*v_clear_line)(VirtScr *);

void (*v_goto)(VirtScr *, int r ow, int col);

void (*v_write)(V irtScr *, int r ow, int col, char *str);
void (*v_putc)(VirtScr *, int r ow, int col, int ch);

void (*v_set_colour)(VirtScr *, int colour);

void (*v_flush)(VirtScr *);

void (*v_beep)(VirtScr *);

/* optional: not used if NULL */
void (*v_insert)(VirtScr *, int r ow, int col, char *str);

int (*v_scroll)(VirtScr *, int start, int end, int nlines);
} VirtScr;

The first three fields in this structure are “private”, for use only within the implementation of the
“public” functions. The remaining fields are all function pointers, and are described below. Note
that all functions have at least one parameter, which is a pointer to the instance of theVirtScr in
question. Thisis always referred to asvs below. Note also that the top-left-hand corner of the
window is taken to be (0,0).

v_new(vs)
Obtain a new VirtScr , and return a pointer to it. This is not used at present, and should
returnNULL .

v_close(vs)
Close the window to whichvs refers.

v_rows(vs)
Return the number of rows invs.

v_cols(vs)
Return the number of columns invs.

v_clear_all(vs)
Clear the window completely.

Pa g e8 25th September 1992

Xvi Source Code Notes 9

v_clear_line(vs, int row, int col)
Clear the specified line, from the given column to the right hand edge of the window,
inclusive.

v_goto(vs, int row, int col)
Move the cursor to the specified row and column.

v_write(vs, int row, int col, char *str)
Write the specified string of characters into the window, starting at the specified row and
column. Theparameters will be such that the string will always fit into a single line of
the window, i.e. no line-wrapping is necessary; however, it is quite possible for the string
to end on the last character of a line, and some implementations will need to take special
precautions to handle this correctly.

v_putc(vs, int row, int col, int ch)
This is likev_write but for a single character.

v_set_colour(vs, int colour)
Set the colour for all subsequent output (including clearing of lines or the whole window)
to the specified colour. The meaning of the value is system-specific.

v_colour_cost(vs)
Return the number of extra characters which are taken up in the window by a colour
change. Thisis almost always 0, but there exist some terminals for which it is not (see
the “sg” termcap capability).

v_flush(vs)
Flush all screen output, and move the cursor on the screen to the correct position.The
screen need not actually be updated until either this function is called, or
xvi_handle_event() returns.

v_beep(vs)
Beep. Itis acceptable to flash the screen or window if no audio facility is available.

v_insert(vs, int row, int col, char *str)
This function inserts the given string at the given position, pushing any other characters
on the same row to the right. If such a facility is not available, the function pointer
should be set toNULL .

v_scroll(vs, int start, int end, int nlines)
This function scrolls the set of lines betweenstart andend (inclusive) by nlines lines. If
nlines is positive, normal scrolling should be done, i.e. the lines should be moved
upwards with respect to the window. If nlines is negative, scrolling should be in the
reverse direction. The lines which are left by the scrolling should be cleared.The
function should return non-zero if the scrolling was successful, otherwise 0.

If scrolling is not available, the function pointer should be set toNULL .

4.3. Parameters

Default values should be#defined for certain parameters as follows:

25th September 1992 Pa g e9

10 XviSource Code Notes

Parameter Name Type #definename
syscolour numeric DEF_SYSCOLOUR
colour numeric DEF_COLOUR
statuscolour numeric DEF_STCOLOUR
roscolour numeric DEF_ROSCOLOUR
helpfile string HELPFILE
format string DEF_TFF

4.4. FileFormats

The functions inxvi which read and write text files are aware of several different newline
conventions (for example,"\ n" on UNIX , "\ r \ n" on MS-DOS, and so on), so that any version of
the editor can read and write any of the supported formats. The value of theformat parameter
(which can be set to “unix”, “ msdos”, “ macintosh”, etc.) determines which format is currently
being used. If you are portingxvi to a system with a newline convention which isn’t one of those
currently supported (see the table calledtftable in fileio.c) you may have to add a new entry to
the table.

Unfortunately, the current design is not as general as it ought to be.If you happen to be porting to
VMS, or some other system which doesn’t use either a single character or a consecutive pair of
characters to represent a newline, you will have quite a lot of work to do if you want to retain the
facility for converting between file formats within the editor.

In any case, your system interface module should defineDEF_TFF to be the index of the entry in
tftable which represents the default format for your system. This is the value forPen(P_format)
which will be compiled into the parameter table.

4.5. Noteson Termcap Implementation

The termcap implementation of the terminal interface is currently only used for theUNIX port.
This module could quite easily be re-used for other systems if desired; the following routines
would need to be defined by the system module:

void foutch(int c)
Output a single character to the terminal. This must be implemented as a function, not a
macro, because it is passed as a parameter into thetermcap library.

void moutch(int c)
Same asfoutch() except that it can be implemented as a macro.This will be used by the
termcap interface module to write characters to the screen.

void oflush(void)
Flush buffered output to the terminal.

4.6. Entering/Leaving Visual Mode

Some facility is commonly necessary for the system interface module to be able to tell the
terminal interface module to enter or exit visual mode. Thismight mean changing the terminal
state between “raw” and “cooked” modes, or switching display pages. No specific interface for
this is defined, although the standardUNIX and MS-DOS implementations do use such a facility,
and the interface functions for both systems are identically defined.

4.7. FunctionKeys / MouseHandling

Function key values are coded into a set of#defined constants in the fileascii.h; e.g. the value
K_UARROW might be given as input when the keyboard up-arrow key has been pressed.

Pa g e10 25thSeptember 1992

Xvi Source Code Notes 11

If the global variableState is not equal toNORMAL , all function keys except for a backspace
key are invalid input. If an invalid key is pressed, the safest strategy may be to beep and wait for
another key to be pressed.NORMAL is defined inxvi.h.

Another facility which may be provided is handling mouse input on systems where it is available.
The strategy for interpreting mouse input is controlled by themouseclick()function (inmouse.c);
the idea is to make the strategy independent of any specific device interface. Ifa mouse button is
pressed before a keyboard key is pressed, the following routine should be called:

mouseclick(int row, int column);

where row and column are the current co-ordinates, counted in character positions, of the mouse
pointer within the screen or editing window. If the mouse is moved while a button is held down,
the routine

mousedrag(int startrow, int endrow, int startcolumn, int endcolumn);

should be called with co-ordinates describing the movement. If the global variableState is not
equal toNORMAL , mouse input can be ignored altogether.

All this will be considerably tidied up at a later stage, when we have properxvEvent types for
function keys and mouse actions.

4.8. Main

Finally, the system interface module must provide amain() function. Thisfunction must call
xvi_startup(vs, argc, argv, env) at startup, with parameters as follows:

VirstScr *vs;
This is a pointer to theVirtScr structure for the first window, or for the terminal screen.

int argc, char **argv;
These are as for amain() function.

char *env;
This is an environment string, normally the return value fromgetenv("XVINIT") . If the
concept of environment variables does not exist, a string of the form"source filename"
may be passed instead, so as to allow users to localise their usage of the editor.

The return value fromxvi_startup() is a pointer, which will be used in future to identify the
window for input events. For now, it should be stored in theVirtScr ’s pv_window field.

Having called xvi_startup(), input events may then be passed to the editor by calling
xvi_handle_event with a pointer to anxvEvent structure as the sole argument. Thisstructure is
defined as follows:

25th September 1992 Pa g e11

12 XviSource Code Notes

typedef struct event {
enum {

Ev_char,
Ev_timeout

} ev_type;
union {

/* Ev_char: */
int evu_inchar;

/* Ev_timeout: */
} ev_u;

} xvEvent;

#define ev_inchar ev_u.evu_inchar

Theev_type field is a tag which identifies the type of event which has occurred. At present, only
two events are supported: an input character from the user, and a timeout. The union which
follows contains data associated with each event type; currently only the typeEv_char requires
data, as may be seen. The#definefor ev_inchar is provided purely for convenience.

The return value fromxvi_handle_event() is a long integer value which is the time in
milliseconds for which the editor is prepared to wait for more input.If no input arrives within
that time, the function should be called again with an event of typeEv_timeout. The timeout
value returned may be 0L, indicating that no timeout is necessary. It is very important that
timeouts should actually be implemented because they are needed for thepreserve facility.

Currently, if a keyboard interrupt is received, xvi_handle_event() need not be called (it should, in
any case, never be called from an asynchronous interrupt or signal handler) but the global variable
kbdintr should be set to a non-zero value.

5. DAT A STRUCTURES

Structures used inxvi are all typedef’d, and all begin with a capital letter. They are defined in
xvi.h. The following data structures are defined:

5.1. Line

This structure is used to hold a single text line. It contains forward and backward pointers which
are connected together to form a two-way linked list. It also contains a pointer to an allocated
text buffer, an integer recording the number of bytes allocated for the text, and the line number
(an unsigned long). The text is null-terminated, and the space allocated for it may be grown but is
never shrunk. Themaximum size of this space is given by MAX_LINE_LENGTH .

The line number is used when showing line numbers on screen, but this is secondary to its main
purpose of providing an ordering on lines; the ordering of two lines in a list may be established by
simply comparing their line numbers (macros are available for this purpose; see later for details).

5.2. Buffer

This structure holds the internal representation of a file. It contains pointers to the linked list of
lines which comprise the actual text. We always allocate an extra line at the beginning and the
end, with line numbers 0 andMAX_LINENO respectively, in order to make the code which
deals with this structure easier. The line numbers ofLine structures in aBuffer are always
maintained by code inundo.c, which is the only module which ever changes the text of aBuffer .

TheBuffer structure also contains:

Pa g e12 25thSeptember 1992

Xvi Source Code Notes 13

• flags, including readonly and modified

• current filename associated with the buffer

• temporary filename for buffer preservation

• space for themark module to store information about marked lines

• space for theundo module to store information about the last change

• number of windows associated with the buffer

The following macros are used to find out certain information aboutLines within Buffers:

lineno(Buffer *b, Line *l)
Returns the line number of the specifiedLine, which belongs to the specifiedBuffer .

earlier(Line *l1, Line *l2)
ReturnsTRUE if l1 is earlier in the buffer thanl2.

later(Line *l1, Line *l2)
ReturnsTRUE if l1 is later in the buffer thanl2.

is_lastline(Line *l1)
ReturnsTRUE if l1 is the last line (i.e. the extra line at the end, not the last text line) of
the buffer.

is_line0(Line *l1)
ReturnsTRUE if l1 is the 0th line (i.e. the extra line at the start, not the first text line) of
the buffer.

5.3. Posn

This structure is very simple; it contains aLine pointer and an integer index into the line’s text,
and is used to record a position within a buffer, e.g. the current cursor position.

These functions are available for operating onPosnstructures:

gchar(Posn *)
Returns the character which is at the given position.

inc(Posn *)
Increments the given position, moving past end-of-line to the next line if necessary. The
following type is returned:

enum mvtype {
mv_NOMOVE, /* at beginning or end of buffer */
mv_SAMELINE, /* still within same line */
mv_CHLINE, /* changed to different line */
mv_EOL, /* at terminating ’\0’ */

};

dec(Posn *)
As for inc() but decrements the position.

lt(Posn *p1, Posn *p2)
ReturnsTRUE if the position specified byp1 is earlier in the buffer than that specified by
p2.

5.4. Xviwin

This structure maps a screen window onto aBuffer . It contains:

• apointer to theBuffer structure which it is mapped onto

25th September 1992 Pa g e13

14 XviSource Code Notes

• the cursor’slogical position in the buffer (aPosnstructure)

• the cursor’sphysicalposition in the window (row and column)

• information about size and location of screen window

• current text of status line

• forward and backward pointers to other windows

Note that there is at least oneXviwin for every Buffer .

When the editor was modified to support buffer windows, many global variables were moved into
the Buffer andXviwin structures; some were left as globals.For instance, theundoandmark
facilities are obviously buffer-related, but yank is useful if it is global (actually static within its
own module); it was decided thatsearchandredoshould also be global.

Some modules have their own internal static data structures; for instance, thesearch module
remembers the last pattern searched for. Also, certain modules use data structures which are
included in more global ones; e.g. eachBuffer structure contains some data used only within
undo.c. This is not very well structured, but in practice it’s quite clean because we simply ensure
that references to such structures are kept local to the module which “owns” them.

5.5. Mark

This data structure records a mark (defined by them command). Itcontains aPosn and a
character field to hold the letter which defines the mark.EachBuffer contains an array of these
structures for holding alphabetic marks, plus one for the previous context mark (as used by the’’
and‘‘ commands). Thefile mark.c deals with marks.

5.6. Change

This structure records a single change which has been made to a buffer. It also contains a pointer,
so that it may be formed into a list. See the discussion ofundo.cbelow for further details.

5.7. Flexbuf

This structure is used to store text strings for which the length is unknown. The following
operations are defined for this type. All functions take a Flexbuf pointer as a parameter.

flexnew(f)
Initialise a Flexbuf; not needed for static Flexbufs.

flexclear(f)
Truncate a Flexbuf to zero length, but don’t free its storage.

flexdelete(f)
Free all storage belonging to a Flexbuf.

flexempty(f)
ReturnTRUE if the Flexbuf is empty.

flexlen(f)
Return the number of characters in the Flexbuf.

flexrmchar(f)
Remove the last character from a Flexbuf.

flexpopch(f)
Remove the first character from a Flexbuf and return it.

Pa g e14 25thSeptember 1992

Xvi Source Code Notes 15

flexgetstr(f)
Return a pointer to the string contained in the Flexbuf.

flexaddch(f, c)
Add the characterc to the end of the Flexbuf.

lformat(f , fmt, ...)
A subset ofsprintf() but for Flexbufs.

vformat(f , fmt, va_list)
A subset ofvsprintf() but for Flexbufs.

The last two functions are especially useful, since they avoid the usual problems with the lack of
bounds-checking insprintf() . All code in the editor itself now uses Flexbufs to avoid the
possibility of buffer overruns, and to reduce the size of the executable. SomeOS-specific
modules, however, may still use theprintf() family. The subset ofprintf -like format specifiers
implemented includes those for integers and strings, but not for floating-point numbers.

5.8. bool_t

A simple Boolean type; has valuesTRUE andFALSE, which are defined as 1 and 0 so as to be
compatible with C comparison operators.

5.9. xvEvent

This type is defined in the previous section, since it forms part of the porting interface.

5.10. VirtScr

This type represents a virtual screen, and is constructed in a similar way to aclass. It contains
some function pointers which may be used to manipulate the screen in various ways, and some
private data which is used by the implementation of the class.

The old terminal interface, which consisted of a set of disparate functions, is being replaced by
the VirtScr interface; the first step in this process has been accomplished by the provision of a
default VirtScr implementation using the old primitive functions. New, native, VirtScr
implementations may now be coded, which will increase the efficiency of screen output.

As the final stage, a windowing implementation of theVirtScr class will be provided, using the
underlying VirtScr implementations, and the window-handling code in the editor will be
modified to that each occurrence of anXviwin references its own VirtScr . It will then be
possible to build a version of the editor which operates in a true windowing environment by using
a separate screen window for each buffer, instead of the current vertical-split method.

A full definition of theVirtScr type will be found in the previous section.

5.11. GlobalVariables

There are only a few global variables in the editor. These are the important ones:

curbuf pointer to the currentBuffer

curwin pointer to the currentXviwin

State the currentstateof the editor; controls what we do with input characters.The value is
one of the following:

NORMAL The default state;vi-mode commands may be executed

25th September 1992 Pa g e15

16 XviSource Code Notes

INSERT Insert mode, i.e. characters typed get inserted into the current buffer

REPLACE Replace mode, characters in the buffer get overwritten by what is
typed

CMDLINE Reading a colon-command, regular expression or pipe command

DISPLAY Displaying text, i.e.:p command, or:setor :map with no argument

echo This variable controls what output is currently displayable.It is used at various points
within the editor to stop certain output which is either undesirable or sub-optimal.It
must always be restored to its previous value after the code which changed it has
finished what it is doing.

kbdintr This can be set to a non-zero value to indicate that an asynchronous user-generated
interrupt (such as a keyboard interrupt) has occurred. See the discussion of event
handling in the previous section.

6. SOURCEFILES

The header filexvi.h contains all the type definitions used within the editor, as well as function
declarations etc.

The following source files form the primary interface to the editor:

startup.c Entry point for the editor. Deals with argument and option parsing and initial
setup, calling module initialisation functions as necessary.

ev ents.c Contains the routinexvi_handle_event(), which is the entry point for handling
input to the editor; input is passed to different routines according to theState
variable. Timeouts on input are also handled here, by calling appropriate routines
in map.cor preserve.c.

edit.c Deals with insert and replace modes.

normal.c Handles normal-mode commands.

map.c This file is responsible for all input mapping (both set up by the:map command
and internally for function-key mappings; it also implements a stuff-characters-
into-the-input-stream function for use within the editor. This is used, for
example, to implement command redo (but not to implement “undo” and “put” as
in STEVIE).

Colon (ex-type) commands are handled by this group:

cmdline.c Decodes and executes colon commands.

ex_cmds1.c File-, Buffer - andXviwin -related colon commands.

ex_cmds2.c Other colon commands (e.g. shell escape).

Screen updating is done within the following files:

screen.c Screen updating code, including handling of line-based entry (for colon
commands, searches etc) as they are typed in, and display-mode stuff (for
parameter displaying,:g/re/p etc).

cursor.c This file contains the single functioncursupdate(), which is responsible for
deciding where the physical screen cursor should be, according to the position of
the logical cursor in the buffer and the position of the window onto that buffer.
This routine is not very optimal, and will probably disappear in due course.

Pa g e16 25thSeptember 1992

Xvi Source Code Notes 17

defscr.c This file contains the default implementation of theVirtScr class, on top of the
old terminal/system interface.

status.c Functions to update the status line of a window; there are different functions to
display file information (name, position etc.) and error/information messages.

These files deal with specific areas of functionality:

find.c Search functions: all kinds of searches, including character-based and word-
based commands, sections, paragraphs, and the interface to “real” searching
(which is actually done insearch.c).

mark.c Provides primitives to record marks within aBuffer , and to find the marks again.

mouse.c Code to handle mice moving the cursor around and resizing windows.

param.[ch] Code to handle setting of, and access to, parameters. (These are things like
tabstops, autoindent, etc.)

pipe.c Handles piping through system commands.

preserve.c File preservation routines.

search.c Code for pattern-searching in a buffer, and for substitutions and global execution.
Usesregexp.[ch] for the actual regular expression stuff.

tags.c Routines to handle tags — for:tag, -t andˆ].

undo.c Code to deal with doing and undoing; i.e. making and unmaking changes to a
buffer. This is one of the more complex and delicate files.

yankput.c Code to deal with yanking and putting text, including named buffers.

while these files provide lower-level functions:

alloc.c Memory allocation routines.

ascii.[ch] Deals with the visual representation of special characters on the display (e.g.
tabs, control chars).

buffers.c Routines dealing with the allocation and freeing ofBuffers.

fileio.c File I/O routines; reading, writing, re-editing files.Also handling of theformat
parameter.

flexbuf.c Flexible-length character-buffer routines.

misccmds.c Miscellaneous functions.

movement.c Code to deal with moving the cursor around in the buffer, and scrolling the screen
etc.

ptrfunc.[ch] Primitives to handle Posn structures; including various operators to compare
positions in a text buffer.

regexp.[ch], regmagic.h
Regular-expression stuff, originally written by Henry Spencer (thanks Henry) and
slightly hacked for use withinxvi.

signal.c Handling of terminal-generated signals in an ANSI environment.

virtscr.h Virtual Screen interface definition. This is a new part of xvi, and is not yet fully
completed. Whenit is finished, it will provide the ability to implement “native”
versions ofxvi under various windowing systems, in a clean and wholesome way.
Currently there is a single instance of theVirtScr class, which is defined on top
of the old system/terminal interface.

25th September 1992 Pa g e17

18 XviSource Code Notes

windows.c Code to deal with creating, deleting, resizing windows.

version.c Contains only the version string.

Pa g e18 25thSeptember 1992

