Notes on the Xvi Source Code

Chris Downey
John Downey

Xvi (pronounced ecks-vee-eyeis a fee, portable, multi-winde
implementation of the populanix® editor vi.

This document contains information onvhto port xvi to systems not currently
supported. Italso explains he the xvi source code is arranged into modules,
and eplains some of the data structures which are used, so that modifications
may be made if and when necessary to the editor itself.

1. INTRODUCTION

Xvi is intended to be portable to just abowy aystem. Thids one of the central reasons for its
existence; the authors wish to be able to use the same editpwbere.

The main body of the editor is (supposedly) fully portable, relying only on stanalilitiefs
defined by the White Book, and on a sepomitiveswhich are preided by a set of one or more
modules for each operating systeth. STDC__is defined, certain ANSI Catilities will be
used, but the editor will compile with non-ANSI compilers.

Therefore, in order to porvi to a nav system, all that is necessary is toide the defined set
of primitives and then build the editorOr at least, thas the idea; we ha refined the set of
primitives as we prt the editor to ng environments, and i§ getting pretty easy ma

The rest of this document is divided into sections as follows:

Section 2: System-Specific Modules
This section deals with the layout of source files andefilak which you will hee
deal with when portingvi.

Section 3: Primitives Pvded by xvi
Discusses what primites ae provided by the main body of the editor source code for
use by the system interface code.

Section 4: System Interface
Explains the primities which need to be provided in order to makework.

Section 5: Data Structures
Details the internal data types used in the editat ary functions &ailable for operating
on those types.

Section 6: Source Files
Lists the source files comprising the editod explains what functionality is provided by
each one.

2. SYSTEM-SPECIFIC MODULES

The system-specific code normally consists of three (or more) fileg; falé, a “h” file, and a
malkefile. For example:

25th September 1992 Pagel

2 Xvi Source Code Notes

gnx.c
gnx.h
makefile.qnx

comprise the system-specific module for the QNX operating system.

In most cases, the system-specific code is divided indootwrore modules, where one (called
the system interface modules concerned with general interactions with the operating system and
the other (called theéerminal interface modu)eis designed for a specific intade to a display
and leyboard (and possihblya mouse).

For example, the generionix implementation hasinix.c and unix.h for the system inteaice
module, andtcap_scr.c and termcap.h for the terminal interface module; this shoulariv
reasonably with anfull-duplex terminal that can be described by teemcap and terminfo
databases. Oconsoles with memory-mapped displays and systems with graphic usexceserf

it may be possible to aclvie faster display updating and perhaps other benefits by replacing the
termcap module with another one that makes better use of wérafizcilities are aailable. For
instance, there is an experimental version for $amVwhich allovs mouse input on Sun
workstations running the SunWiewindow system.

On the other hand, theermcap-specific routines might conagbly be useful on some other
operating systems (such as VMS), so in general it seemed a good ideaetthen@kmcap-
specific routines a separate module.

The current MS-DOS implementation has a separate terminabiceariodule, which is designed
specifically for IBM PC compatible computers. This is in the files

ibmpc_a.asm
ibmpc_c.c
ibmpc.h
The first of these is written in assembly language because there are not enough routines common

to the various MS-DOS C compilers which reliably access the display eyboded at a b
enough leel.

The hardware-independent system interface module for MS-DOS is in
msdos_a.asm
msdos_c.c
msdos.h

The first of these is written in assembly language for the same reasdbnagdsa.asm

Theoretically different terminal interface modules could be written for MS-DOS systems running
on hardware which is not IBM-compatible but, unfortunatslgh systems seem to be virtually
extinct navadays.

Sometimes more than one makefile is provided, as in the casexgfwhere different grsions
work in slightly different ways.

It is, of couse, not necessary to provide all — oy ar of these files for a particular
implementation; this is just a comtion. Themalkefile(s) for each system determine what files
are used in the compilation of the editor.

The following porting modules ar@alable at present:

Page2 25th September 1992

Xvi Source Code Notes

Microsoft C 5.*

makefile.msc

System Makfile Sourcdiles
UNIX
BSD makefile.bsd | unix.[ch]tcap*.c termcap.h
System Vit makefile.usg unix.[ch]tcap*.c termcap.h
AIX makefile.aix unix.[ch] tcap*.c termcap.h
ULTRIX makefile.ult unix.[ch] tcap*.c termcap.h
Xenix t makefile.xen | unix.[ch]tcap*.c termcap.h
POSIX (e.g. BSDI) makefile.pos | unix.[ch]tcap*.c termcap.h
SunOS makefile.sun | unix.[ch]tcap*.c termcap.h
SunView makefile.sv unix.[ch]sunview.h
sunfront.c sunback.c
Xvi.icn
MS-DOS msdos_c.c msdos.h

ibmpc_c.c ibmpc.h

8086mm.indbmpc_a.asm

& MASM 5.* msdos_a.asm
Microsoft Quick C makefile.qc 8086mm.indbmpc_a.asm
& MASM 5.* msdos_a.asm
Zortech C++ 2.* makefile.zc2 | 8086mm.indbmpc_a.asm
& MASM 5.* msdos_a.asm
Zortech C++ 3.* makefile.zc3 8086mm.indbmpc_a.asm
& MASM 5.* msdos_a.asm
Zortech C++ 3.*
386 protected mode | makefile.386 | pc386.[ch]
0S/2t
Version 1, text mode
Microsoft C 5.1 makefile.os2 os2vio.[ch]
& MASM 5.1 i286.asm
QNX
Version 2/3 (CII) makefile.gnx | qgnx.[ch]
Version 4 (Watcom C)| makefile.gn4 | unix.[ch]tcap*.c termcap.h
TOS t
Lattice C makefile.tos tos.[ch}tos.Ink

t Versions marked witht probably do not work, as systems/éaot been recentlyvailable to

the authors for testing.

3. PRIMITIVES PROVIDED BY XVI

3.1. GeneralDefinitions

The filexvi.h should be included by all system-specific modules; this file should also be edited so

that a system-specific header file (or files), as determined by a predefyvealds will be

included.

25th September 1992

Page3

4 Xvi Source Code Notes

For instance, undeuNix, the word UNIX is defined by passing thdUNIX flag to the C
compiler from the makefile, andvi.h contains the following lines:

#ifdef UNIX
include "unix.h"
#endif
in order to obtain theNix-related definitions from that header file.

Among the definitions irvi.h are the following:

bool_t
A Boolean type having valud$RUE or FALSE.

const

volatile
These are defined out whenSTDC___is not defined, so that it isvedys safe to use
them.

xvi.h also includes arious other header files which are needed. The following system header
files are alvays included:

stdio.h

ctype.h
signal.h
string.h

These files are included_if STDC__is defined:

stddef.h
stdlib.h
limits.h

and if__STDC__is not definedxvi.h will provide its own definitions for the following:

INT_MAX
INT_MIN
ULONG_MAX

FILE *f open();
char *malloc();
char *getenv();

Finally, one of the following header files will be included:

stdarg.h
varargs.h

depending on whether STDC__is defined or not. In order to makmoding of varargs
functions easiera macroVA_START() is defined, which takes the same arguments as the ANSI-
styleva_start(), but which is alsoailable in non-ANSI environments (e.g. BSD).

In order to mak it possible to use ANSI-style prototypes for function declarations, but stV allo
compilation under non-ANSI environments, the following macro is provided:

Paged 25th September 1992

Xvi Source Code Notes 5

#ifdef __ STDC__

define P(ags) args
#else

define P() ()
#endif

so that function declarations may be specified thus:
extem FILE *fopen P((const char *, const char *));

Please use thisaility when you provide declarations for your system priresi unless your
system alays uses an ANSI compiler.

3.2. Rarameters

An important facility provided for use by system-specific modules is access to theseditor’
parameter table. This is achéel by means of some apparent functions, and a sédefined
token \alues. Thdunctions are:

void set_param(int n, val)
This function sets the indicated parameter to the pasalee,which must be of an
appropriate typePaameter values may be obtained by means of theafimigpfunctions
(actually macros):

char *Ps(int n)
return value of string parameter

int Pn(int n)
return value of numeric parameter

bool_t Pb(int n)
return value of boolean parameter

char **PI(int n)
return value of list parameter RULL -terminated array of character pointers)

int Pen(int n)
return numeric value (index) of enumerated parameter

char **Pes(int n)
return string value of enumerated parameter

In all cases, thént n agument is the indeof the parameter in the table; a set#ofefines is
provided, of the form:

P_name

which map the parameter names into integedlies. Thusfor example, we might obtain the
value of thecolour parameter:

colour = Pn(P_colour);
or set the value of theelpfile parameter:

set_param(P_helpfile, "/usr/lib/xvi/help");

4. SYSTEMINTERFACE

4.1. Introduction

There follows a list of the primites which must be provided either by the system iaiesf
module or by the underlying OS. Note that it is perfectly acceptable to implement functions or

25th September 1992 Pageb

6 Xvi Source Code Notes

external variables as macros so long ag tHeok the same” as the definitions b&loAs a
guideline, anything which is (a) in capitals, or (b) isamst variable, will be implemented as a
#definefor most systems.

When you want to actually do the port, it is highly recommended that youthepsystem-
specific files for the system which seems closest to your own, and modify those files, rather than
starting from scratch.

All the following symbols should be defined in the system iaterfmodule, or by standard
header files already included Ryi.h, or by other header files explicitly included by the system-
specific header file:

const unsigned int MAXPAT HLEN
The maximum number of characters in a pathname.

const unsigned int MAXNAMLEN
The maximum number of characters in a filename.

int remove(char *filename)
Remaove the named file as per ANSI.

int rename(char *old, char *new)
Rename the fileld to newas per ANSI.

void sleep(unsigned int seconds)
Put the process to sleep for theegi number of seconds.

const char * const DIRSEPS
The pathname separators supported for system calls"(¢.g.for MS-DOS).

FILE *fopenrb(char *file)

FILE *fopenwb(char *file)
Like the standardopen() library call, but thg both open files in “binary” mode (i.e. no
corversion of cr/lf/crlf is done), for reading and writing respesi.

bool_t exists(char *filename)
ReturnsTRUE if the named file exists.

bool_t can_write(char *filename)
ReturnsTRUE if the named file can be written, i.e. if@enwb(filename)will succeed.

char *fexpand(char *filename)
Returns a filename-expanded version of the passed filename.

#define SETVBUF_A/AIL

const unsigned int READBUFSIZ

const unsigned int WRTBUFSIZ
If SETVBUF_AVAIL (or _ STDC) is defined, these constant values are used to set
I/0 buffer sizes (using theetvbuf() function) for reading and writing filedNote that if
buffers of these sizes are waidable at runtime, the editor will try to allocate smaller
buffers by iteratiely halving the liffer size until the allocation succeeds. It is therefore
acceptable for these values to be quite large.

char *tempfname(const char *filename)
Create a unique name for a temporary file, possibly ddemameas a base (this will be
used bydo_presewne() to create a backup file for the file nameditgname). Thestring
returned must hee keen allocated usingalloc(); NULL can be returned if there is no
more memory ilable.

Page6 25th September 1992

Xvi Source Code Notes 7

int call_system(char *command)
Invoke the gven command in a subshell. This is used for shell escapes XxwmThe
command string may contain metacharacters which xgrecéed to be expanded by a
command interpretee.g. UNIX /bin/sh, MS-DOScommand.com Return value is O for
success. Imary environments, this call may safely Bdefined as system(command)

int call_shell(char *shell)
Invoke the named shell. This is used for tishell command. Itmay be mapped into
call_system() but is separate on some systems fdiciehcy reasons (i.e. not woking
two dhells to get one). Return value is O for success.

bool_t

sys_pipe(char *cmd, int (*wf)(FILE *), long (*rf)(FILE *))
Used for the! command. Thdirst parameter is the command tosake, while the
second and third are functions which should be called with an open file pointer in order to
write out old, or read in ne lines (respectely). Note that if “real” pipes are not
available, it is acceptable to implement this function using temporary fileghb wf
function must obviously be called befafe

void sys_exit(int code)
Exit with given exit status. This routine must not returiihe editor is considered “dead”
once it has been called, and no further calls to editor functions should be made.

void delay(void)
Delay for a short time, about a fifth of a second. This is used for showing matching
braclets whenshowmatchis set. It is acceptable to just return if implementing this is
not easy.

4.2. Sceen Control

An instance of the folling structure must be defined in order towllscreen output to tak
place:

25th September 1992 Page7

8 Xvi Source Code Notes

typedef struct virtscr {

genptr *pv_window;
int pv_rows;
int pv_caols;
[* public: */
VirtScr *(*v_new)(VirtScr *);
void (*v_close)(MrtScr *);
int (*v_r ows)(VirtScr *);
int (*v_cols)(VirtScr *);
void (*v_clear_all)(VirtScr *);
void (*v_clear_line)(VirtScr *);
void (*v_goto)(VirtScr *, int r ow, int col);
void (*v_write)(VirtScr *, int r ow, int col, char *str);
void (*v_putc)(VirtScr *, int r ow, int col, int ch);
void (*v_set_colour)(MrtScr *, int colour);
void (*v_flush)(VirtScr *);
void (*v_beep)(VirtScr *);
/* optional: not used if NULL */
void (*v_insert)(VirtScr *, int r ow, int col, char *str);
int (*v_scroll)(VirtScr *, int start, int end, int nlines);
} VirtScr;

The first three fields in this structure are Vre”, for use only within the implementation of the
“public” functions. The remaining fields are all function pointers, and are described Hétde
that all functions hae a least one parametavhich is a pointer to the instance of WtScr in
guestion. Thids aways referred to ags belov. Note also that the top-left-hand corner of the
window is taken to be (0,0).

v_new(vs)
Obtain a ne VirtScr, and return a pointer to it. This is not used at present, and should
returnNULL .

v_close(vs)
Close the winde to which vsrefers.

V_rows(vs)
Return the number of rows vs.

v_cols(vs)
Return the number of columnsvas.

v_clear_all(vs)
Clear the winder completely.

Page8 25th September 1992

Xvi Source Code Notes 9

v_clear_line(vs, int ow, int col)
Clear the specified line, from thevgn column to the right hand edge of the wimdo
inclusive.

v_goto(vs, int row, int col)
Move the cursor to the specifiedwand column.

v_write(vs, int row, int col, char *str)
Write the specified string of characters into the wimdsbarting at the specified woand
column. Theparameters will be such that the string willvays fit into a single line of
the windav, i.e. no line-wrapping is necessarywawer, it is quite possible for the string
to end on the last character of a line, and some implementations will need tpeeikal
precautions to handle this correctly.

V_putc(vs, int row, int col, int ch)
This is likev_write but for a single character.

v_set_colour(vs, int colour)
Set the colour for all subsequent output (including clearing of lines or the wholewyindo
to the specified colourThe meaning of the value is system-specific.

v_colour_cost(vs)
Return the number of extra characters which arentalp in the winde by a ®lour
change. Thiss almost alvays 0, but there exist some terminals for which it is not (see
the “sg’ termcap capability).
v_flush(vs)
Flush all screen output, and weothe cursor on the screen to the correct positibine
screen need not actually be updated until either this function is called, or
xvi_handle_event() returns.
v_beep(vs)
Beep. lItis acceptable to flash the screen or wimdfano audio facility is available.
v_insert(vs, int row, int col, char *str)
This function inserts the gn dring at the gien position, pushing another characters

on the same w to the right. If such a facility is notvailable, the function pointer
should be set thIULL .

v_scroll(vs, int start, int end, int nlines)
This function scrolls the set of lines betwestart andend (inclusive) by nlineslines. If
nlines is positve, normal scrolling should be done, i.e. the lines should besatho
upwards with respect to the windo If nlines is negaive, scrolling should be in the
reverse direction. The lines which are left by the scrolling should be clearébe
function should return non-zero if the scrolling was successful, otherwise 0.

If scrolling is not &ailable, the function pointer should be setNOLL .

4.3. Farameters
Default values should b&defined for certain parameters as follows:

25th September 1992 Page9

10 XviSource Code Notes

Paameter Name| Type #definename
syscolour numeric | DEF_SYSCOLOUR
colour numeric | DEF_COLOUR
statuscolour numeric | DEF_STCOLOUR
roscolour numeric | DEF_ROSCOLOUR
helpfile string HELPFILE

format string DEF_TFF

4.4. FileFormats

The functions inxvi which read and write text files arevae of seeral different navline
corventions (for &le,"\n" onuNix, "\r\n" on MS-DOS, and so on), so thatyarersion of
the editor can read and writeyaof the supported formats. The value of fbemat parameter
(which can be set tauhix”, “msdos, “macintosh’, etc.) determines which format is currently
being used. If you are portingi to a system with a mdine corvention which isnt one of those
currently supported (see the table calii¢gable in fileio.c) you may hae o add a nev entry to
the table.

Unfortunately the current design is not as general as it ought tdflygu happen to be porting to
VMS, or some other system which dodamse either a single character or a conseeytair of
characters to represent a newline, you wiltcheuite a lot of work to do if you ant to retain the
facility for corverting between file formats within the editor.

In ary case, your system interface module should déiBE_TFF to be the inde of the entry in
tftable which represents the default format for your system. This isathue forPen(P_format)
which will be compiled into the parameter table.

4.5. Noteson Termcap Implementation

The termcap implementation of the terminal interface is currently only used fouthe port.
This module could quite easily be re-used for other systems if desired; theirfgllmutines
would need to be defined by the system module:

void foutch(int c)
Output a single character to the terminal. This must be implemented as a function, not a
macro, because it is passed as a parameter intertheap library.

void moutch(int c)
Same agoutch() except that it can be implemented as a madrois will be used by the
termcap interface module to write characters to the screen.

void oflush(void)
Flush buffered output to the terminal.

4.6. Entering/Leaving Visual Mode

Some facility is commonly necessary for the system interface module to be able to tell the
terminal interface module to enter oditevisual mode. Thismight mean changing the terminal
state between “v@’ and “cooked” modes, or switching display pages. No specific interface for
this is defined, although the standardx and MS-DOS implementations do use suchdilify,

and the interface functions for both systems are identically defined.

4.7. FunctionKeys / MouseHandling

Function ley wvalues are coded into a set#fefinad constants in the filascii.h; e.g. the alue
K_UARROW might be gien as hput when the &yboard up-arre key has been pressed.

Pagel0 25thSeptember 1992

Xvi Source Code Notes 11

If the global \ariable State is not equal tdtNORMAL , al function keys except for a backspace
key are invalid input. If an irvalid key is pressed, the safest strategy may be to beep and wait for
another ky o be pessed.NORMAL is defined irxvi.h.

Another facility which may be provided is handling mouse input on systems whergéiabla.
The strategy for interpreting mouse input is controlled byrthaseclick()function (inmouse.g;
the idea is to makthe strategy independent ofyagpecific device integfce. Ifa mouse button is
pressed before alboard ky is ressed, the following routine should be called:

mouseclick(int row, int column);

where rav and column are the current co-ordinates, counted in character positions, of the mouse
pointer within the screen or editing windo If the mouse is mad while a button is held dan,
the routine

mousedrag(int startrow, int endrow, int startcolumn, int endcolumn);
should be called with co-ordinates describing theyement. Ifthe global ariable State is not
equal toNORMAL , mouse input can be ignored altogether.

All this will be considerably tidied up at a later stage, when we Igpoper xvEvent types for
function keys and mouse actions.

4.8. Main

Finally, the system inteaice module must provide raain() function. Thisfunction must call
Xvi_startup(vs, argc, argy env) at startup, with parameters as follows:

VirstScr *vs;
This is a pointer to th¥irtScr structure for the first windg or for the terminal screen.

int argc, char **argv;
These are as forraain() function.

char *env;
This is an environment string, normally the return value fgetenv("XVINIT") . Ifthe
concept of evironment variables does not exist, a string of the ftgaurce filenamé
may be passed instead, so as tonallsers to localise their usage of the editor.

The return value fronxvi_startup() is a pointer which will be used in future to identify the
window for input eents. For naw, it should be stored in theirtScr’s pv_window field.

Having called xvi_startup(), input eents may then be passed to the editor by calling
xvi_handle_esent with a pointer to arxvEvent structure as the solegament. Thisstructure is
defined as follows:

25th September 1992 Pagell

12 XviSource Code Notes

typedef struct event {
enum {
Ev_char,
Ev_timeout
} ev_type;
union {
/* Ev_char: */
int evu_inchar;

/* Ev_timeout: */
} ev_u;
} XxvEvent;

#define @& inchar ev_u.evu_inchar

Theev_typefield is a tag which identifies the type ofnt which has occurred. At present, only
two events are supported: an input character from the, @eer a timeout. The union which
follows contains data associated with eaonetype; currently only the typEv_char requires
data, as may be seen. TFHaefinefor ev_inchar is provided purely for carenience.

The return value fronxvi_handle_event() is a long integer value which is the time in
milliseconds for which the editor is prepared to wait for more inffufio input arrizes within
that time, the function should be called again with wenteof typeEv_timeout. The timeout
vaue returned may be OL, indicating that no timeout is necesdarg very important that
timeouts should actually be implemented becauseatgeneeded for thpreserve facility.

Currently if a keyboard interrupt is recegd, xvi_handle_esent() need not be called (it should, in
ary case, neer be alled from an asynchronous interrupt or signal handlerjie global ariable
kbdintr should be set to a non-zero value.

5. DATA STRUCTURES

Structures used irvi are all typedefl, and all bgin with a capital letter They are defined in
xvi.h. The following data structures are defined:

5.1. Line

This structure is used to hold a singletténe. It contains forward and backward pointers which
are connected together to form aotway linked list. It also contains a pointer to an allocated
text buffer, an integer recording the number of bytes allocated for the text, and the line number
(an unsigned long). The text is null-terminated, and the space allocated for it mawbédgris

never shrunk. Themaximum size of this space isrgn by MAX_LINE_LENGTH .

The line number is used when showing line numbers on screen, but this is secondary to its main
purpose of providing an ordering on lines; the ordering oflimes in a list may be established by
simply comparing their line numbers (macros aslable for this purpose; see later for details).

5.2. Buffer

This structure holds the internal representation of a file. It contains pointers to e listkof
lines which comprise the actuakte We dways allocate an extra line at the beginning and the
end, with line numbers 0 andAX_LINENO respectiely, in order to mak the code which
deals with this structure easiefhe line numbers ofine structures in a@Buffer are alays
maintained by code iando.c, which is the only module whichver changes the text of Buffer.

The Buffer structure also contains:

Pagel2 25thSeptember 1992

Xvi Source Code Notes 13

. flags, including readonly and modified

. current filename associated with the buffer

. temporary filename for buffer preservation

. space for thenark module to store information about marked lines

. space for theindo module to store information about the last change
. number of windows associated with the buffer

The following macros are used to find out certain information aboas within Buffers:
lineno(Buffer *b, Line *I)
Returns the line number of the specifigde, which belongs to the specifi@iiffer.
earlier(Line *I11, Line *12)
ReturnsTRUE if 11 is earlier in the buffer thal.
later(Line *I1, Line *12)
ReturnsTRUE if |11 is later in the buffer thal2.
is_lastline(Line *I1)
ReturnsTRUE if 11 is the last line (i.e. the extra line at the end, not the last text line) of
the buffer.

is_lineO(Line *I1)
ReturnsTRUE if |1 is the Oth line (i.e. thexéra line at the start, not the first text line) of
the buffer.

5.3. Posn

This structure is very simple; it containd.i@e pointer and an integer indento the lines text,
and is used to record a position within a byféag. the current cursor position.

These functions arevalable for operating ofPasn structures:

gchar(Posn *)
Returns the character which is at theegiposition.

inc(Posn *)
Increments the gen position, maing past end-of-line to the next line if necessarkie
following type is returned:

enum mvtype {

mv_NOMOVE, /* at beginning or end of buffer */
mv_SAMELINE, [* still within same line */
mv_CHLINE, /* changed to different line */
mv_EOL, [* at terminating \O’ */

I3

dec(Posn *)
As forinc() but decrements the position.
[t(Posn *p1, Posn *p2)
ReturnsTRUE if the position specified byl is earlier in the bffer than that specified by

p2.
5.4. Xviwin
This structure maps a screen windanto aBuffer. It contains:
. apointer to theBuffer structure which it is mapped onto

25th September 1992 Pagel3

14 XviSource Code Notes

. the cursor’dogical position in the buffer (2osn structure)

. the cursor'physicalposition in the winde (row and column)
. information about size and location of screen window

. current text of status line

. forward and backward pointers to other windows

Note that there is at least oKeiwin for every Buffer.

When the editor was modified to suppautfer windows, maw global variables were nved into
the Buffer and Xviwin structures; some were left as globalx instance, theindo and mark
facilities are obviously bffer-related, It yankis useful if it is global (actually static within its
own module); it was decided thaearch andredo should also be global.

Some modules ke their own internal static data structures; for instance,séech module
remembers the last pattern searched fdiso, certain modules use data structures which are
included in more global ones; e.g. edffer structure contains some data used only within
undo.c. This is not very well structuredubin practice its quite clean because we simply ensure
that references to such structures are kept local to the module which “owns” them.

5.5. Mark

This data structure records a mark (defined byntheommand). Itcontains aPosn and a
character field to hold the letter which defines the m&&chBuffer contains an array of these
structures for holding alphabetic marks, plus one for the previous context mark (as usetl by the
and” commands). Théle mark.c deals with marks.

5.6. Change

This structure records a single change which has been madeaffera b also contains a pointer
so that it may be formed into a list. See the discussiomad.c belav for further details.

5.7. Flextuf

This structure is used to storexttestrings for which the length is unkmn. The following
operations are defined for this type. All functionsetalitexbuf pointer as a parameter.

flexnew(f)
Initialise a Flexbuf; not needed for static Flexbufs.

flexclear(f)
Truncate a Flexbuf to zero length, but ddrée its storage.

flexdelete(f)
Free all storage belonging to a Flexbuf.

flexempty(f)
ReturnTRUE if the Flexbuf is empty.

flexlen(f)
Return the number of characters in the Flexbuf.

flexrmchar(f)
Remaoe the last character from a Flexbuf.

flexpopch(f)
Remore the first character from a Flexbuf and return it.

Pagel4d 25thSeptember 1992

Xvi Source Code Notes 15

flexgetstr(f)
Return a pointer to the string contained in the Flexbuf.

flexaddch(f, ¢)
Add the character to the end of the Flexbuf.

Iformat(f, fmt, ...)
A subset ofsprintf() but for Flexbufs.

vformat(f, fmt, va_list)
A subset ofvsprintf() but for Flexbufs.

The last tvo functions are especially useful, sinceytloid the usual problems with the lack of
bounds-checking irsprintf(). All code in the editor itself mo uses Flebufs to aoid the
possibility of uffer overruns, and to reduce the size of theomitable. SomeDS-specific
modules, hwever, may still use theprintf() family. The subset oprintf -like format specifiers
implemented includes those for integers and strings, but not for floating-point numbers.

5.8. bool t

A simple Boolean type; hasaluesTRUE andFALSE, which are defined as 1 and 0 so as to be
compatible with C comparison operators.

5.9. xvEwent
This type is defined in the previous section, since it forms part of the porting interface.

5.10. MrtScr

This type represents a virtual screen, and is constructed in a similar wayass alt contains
some function pointers which may be used to manipulate the screen in various ways, and some
private data which is used by the implementation of the class.

The old terminal integfce, which consisted of a set of disparate functions, is being replaced by
the VirtScr interface; the first step in this process has been accomplished by the provision of a
default VirtScr implementation using the old primid functions. Ne, native, VirtScr
implementations may mobe mded, which will increase the efficignof screen output.

As the final stage, a windowing implementation of igScr class will be provided, using the
underlying VirtScr implementations, and the window-handling code in the editor will be
modified to that each occurrence of Awmiwin references itswn VirtScr. It will then be
possible to build aersion of the editor which operates in a true windowing environment by using
a ®parate screen windador each bufferinstead of the current vertical-split method.

A full definition of theVirtScr type will be found in the previous section.

5.11. GlobalVariables

There are only a e global variables in the editoThese are the important ones:
curbuf pointer to the currerBuffer

curwin pointer to the currerXviwin

State the currenstateof the editor; controls what we do with input charactdise value is
one of the following:

NORMAL The default stateji-mode commands may breeuted

25th September 1992 Pagel5

16 XviSource Code Notes

INSERT Insert mode, i.e. characters typed get inserted into the current buffer
REPLACE Replace mode, characters in thaffér get werwritten by what is
typed
CMDLINE Reading a colon-command, regular expression or pipe command
DISPLAY Displaying text, i.e:p command, orsetor :map with no argument
echo This variable controls what output is currently displayalilés used at various points

within the editor to stop certain output which is either undesirable or sub-optimal.
must alays be restored to its previouslue after the code which changed it has
finished what it is doing.

kbdintr ~ This can be set to a non-zeralue to indicate that an asynchronous ggsrerated
interrupt (such as aekboard interrupt) has occurred. See the discussiorvestt e
handling in the previous section.

6. SOURCEFILES

The header filxvi.h contains all the type definitions used within the edigrwell as function
declarations etc.

The following source files form the primary interface to the editor:

startup.c Entry point for the editor Deals with argument and option parsing and initial
setup, calling module initialisation functions as necessary.
events.c Contains the routinavi_handle_event(), which is the entry point for handling

input to the editor; input is passed to different routines according tSttte
variable. Timeouts on input are also handled here, by calling appropriate routines
in map.cor preseme.c.

edit.c Deals with insert and replace modes.
normal.c Handles normal-mode commands.
map.c This file is responsible for all input mapping (both set up byrttew command

and internally for function4y mappings; it also implements a dtaharacters-
into-the-input-stream function for use within the editorhis is used, for
example, to implement command redaifbotto implement “undo” and “put” as
in STEVIE).

Colon ex-type) commands are handled by this group:

cmdline.c Decodes andxecutes colon commands.
ex_cmdsl.c File-, Buffer- and Xviwin -related colon commands.
ex_cmds2.c Other colon commands (e.g. shell escape).

Screen updating is done within the following files:

screen.c Screen updating code, including handling of line-based entry (for colon
commands, searches etc) asytlaee typed in, and display-mode dtuyffor
parameter displayingg/re/p etc).

cursor.c This file contains the single functiotursupdate() which is responsible for
deciding where the physical screen cursor should be, according to the position of
the logical cursor in theuffer and the position of the windoonto that lffer.
This routine is not very optimal, and will probably disappear in due course.

Pagel6 25thSeptember 1992

Xvi Source Code Notes 17

defscr.c

status.c

This file contains the default implementation of WieScr class, on top of the
old terminal/system interface.

Functions to update the status line of a window; there are different functions to
display file information (name, position etc.) and error/information messages.

These files deal with specific areas of functionality:

find.c

mark.c
mouse.c
param.[ch]

pipe.c
presewe.c
search.c

tags.c
undo.c

yankput.c

Search functions: all kinds of searches, including charbesed and wrd-
based commands, sections, paragraphs, and the interface to “real” searching
(which is actually done igearch.g.

Provides primitves to record marks within 8uffer, and to find the marks again.
Code to handle mice moving the cursor around and resizing windows.

Code to handle setting of, and access to, parameters. (These are thlengs lik
tabstops autoindent, etc.)

Handles piping through system commands.
File preservation routines.

Code for pattern-searching in affer, and for substitutions and globatezution.
Usesregexp.[ch]for the actual regular expression stuff.

Routines to handle tags — fag, -t and”].

Code to deal with doing and undoing; i.e. making and unmaking changes to a
buffer. This is one of the more compland delicate files.

Code to deal with yanking and putting text, including named buffers.

while these files provide lowende functions:

alloc.c
ascii.[ch]

buffers.c
fileio.c

flexbuf.c
misccmds.c
movement.c

ptrfunc.[ch]

Memory allocation routines.

Deals with the visual representation of special characters on the display (e.g.
tabs, control chars).

Routines dealing with the allocation and freeinggoffers.

File 1/0 routines; reading, writing, re-editing fileAlso handling of thdormat
parameter.

Flexible-length character-buffer routines.
Miscellaneous functions.

Code to deal with moving the cursor around in thiédn, and scrolling the screen
etc.

Primitives to handle Posn structures; including various operators to compare
positions in a text buffer.

regexp.[ch], regmagic.h

signal.c
virtscr.h

Regular-@pression stuff, originally written by Henry Spencer (thanks Henry) and
slightly hacked for use withixrvi.

Handling of terminal-generated signals in an ANSI environment.

Virtual Screen interface definition. This is avgart of xvi, and is not yet fully
completed. Wheii is finished, it will pravide the ability to implement “natg”
versions ofxvi under various windowing systems, in a clean and wholesaye w
Currently there is a single instance of WietScr class, which is defined on top
of the old system/terminal interface.

25th September 1992 Pagel7

18 XviSource Code Notes

windows.c Code to deal with creating, deleting, resizing windows.
version.c Contains only the version string.

Pagel8 25thSeptember 1992

